Morse homology and degenerate Morse inequalities

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morse-Conley-Floer Homology

For Morse-Smale pairs on a smooth, closed manifold the MorseSmale-Witten chain complex can be defined. The associated Morse homology is isomorphic to the singular homology of the manifold and yields the classical Morse relations for Morse functions. A similar approach can be used to define homological invariants for isolated invariant sets of flows on a smooth manifold, which gives an analogue ...

متن کامل

Equivalences for Morse Homology

An explicit isomorphism between Morse homology and singular homology is constructed via the technique of pseudo-cycles. Given a Morse cycle as a formal sum of critical points of a Morse function, the unstable manifolds for the negative gradient flow are compactified in a suitable way, such that gluing them appropriately leads to a pseudo-cycle and a well-defined integral homology class in singu...

متن کامل

Morse Inequalities and Zeta Functions

Morse inequalities for diffeomorphisms of a compact manifold were first proved by Smale [21] under the assumption that the nonwandering set is finite. We call these the integral Morse inequalities. They were generalized by Zeeman in an unpublished work cited in [25] to diffeomorphisms with a hyperbolic chain recurrent set that is axiom-A-diffeomorphisms which satisfy the no cycle condition. For...

متن کامل

Witten’s Proof of Morse Inequalities

Both properties do not depend on the choice of coordinates. The index ind (x) is the number of negative eigenvalues of Hess (f) (x). Let mp = mp (f) be the number of critical points of index p. Let bp = bp (M) = dimH (M) be the dimension of the p de Rham cohomology group. 0→ Ω (M) d −→ Ω (M) d −→ ... d −→ Ω (M) d −→ 0 This is called the de Rham complex. Note that d = 0. If ω = dα, then dω = 0. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topological Methods in Nonlinear Analysis

سال: 1999

ISSN: 1230-3429

DOI: 10.12775/tmna.1999.007